(通用11篇)
作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?下面是小编收集整理的,仅供参考,希望能够帮助到大家。
1
一、学情分析:
1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。
2、学生的活动经验基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。
二、 教材分析:
教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。
本节课的数学目标是:
1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;
2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:
三、教学过程设计:
本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节:问题情境,引入新课
问题:
(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。
(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。
英文励志句子摘抄神仙句
设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。
第二环节:探索猜想,发现结论
问题:
(1)由课题引入中知道:4个-3相加等于-12,可以写成算式
(-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:
(-3)×3=_____;
(-3)×2=_____;
(-3)×1=_____;
(-3)×0=_____。
(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:
(-3)×(-1)=_____;
(-3)×(-2)=_____;
(-3)×(-3)=_____;
(-3)×(-4)=_____。
教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。
教后反思事项:
(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。
(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。
第三环节:验证明确结论
问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
(—4)×1=_____;
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合
一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。
教后反思事项:
(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。
(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。
(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。
第四环节:运用巩固,练习提高
活动内容:
(1)1。计算:
⑴(-4)×5; ⑵(5-)×(-7);
⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);
(2)2。计算:
⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);
“议一议”:几个有理数相乘,因数都不为零时,积的.符号怎样确定?有一个因数为零时,积是多少?
(4)计算:
⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
⑸5÷4×(-1.2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前设计意图:对有理数乘法法则的巩固和运用,练习和提高
教后反思事项:
(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;
(2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
(-1)×(-2)×(-3)×(-4)=_____;
(-1)×(-2)×(-3)×(-4)×0=_____。
通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。
第五环节:感悟反思课堂小结
问题
1.本节课大家学会了什么?
2.有理数乘法法则如何叙述?”
3.有理数乘法法则的探索采用了什么方法?
4.你的困惑是什么
教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。
教后反思事项:学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。
第六环节:布置作业
巩固作业:教科书知识技能1、2;问题解决1;联系扩广1
预习作业;略
四、教学反思:
1、设计条理的问题串,使观察、猜想、验证水到渠成
2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。
3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。
2
教材分析
“数的运算”是“数与代数”学习领域的重要内容。有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。因此本节内容具有承前启后的重要作用。
学情分析
1.让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。
2.通过观察、归纳,提高学生的理性认识。
3.培养学生学会表达、学会倾听的良好品质。
教学目标
1.知识技能:
(1)经历探索有理数乘法运算的过程,归纳有理数乘法运算法则。
(2)掌握有理数乘法法则,能解决简单的的实际问题。
2.数学思考:
通过自主合作探究经历探索有理数运算的过程,发展学生观察、归纳、猜想等能力。
3.问题解决:
通过自主探索和合作交流,发展学生逆向思维及化归思想。
4.情感态度价值观:
通过经历探索有理数乘法运算的.过程感受数学与生活的紧密联系,提高学生对知识的应用能力以及勇于探索、敢于发言的个性品质。
教学重点和难点
教学重点是:有理数的乘法法则的理解和运用。
教学难点是:使学生体会有理数乘法法则规定的合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。
3
一、教学目标
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点
重点:
运用有理数乘法法则正确进行计算。
难点:
有理数乘法法则的探索过程,符号法则及对法则的理解。
三、教学过程
1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的'方向为正方向,向西的方向为负方向。
①2×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向运动米
2×3=
②-2×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向运动米
-2×3=
③2×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向运动米
2×(-3)=
④(-2)×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向运动米
(-2)×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=()同号得
(-)×(+)=()异号得
(+)×(-)=()异号得
(-)×(-)=()同号得
②积的绝对值等于。
③任何数与零相乘,积仍为。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
4
一、知识与能力
掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力
二、过程与方法
经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算
三、情感、态度、价值观
培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性
四、教学重难点
一、重点:熟练进行有理数的乘除运算
二、难点:正确进行有理数的乘除运算
预习导学
通过看课本§1.4的.内容,归纳有理数的乘法法则以及乘法运算律
五、教学过程
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1.有理数的乘法法则:
「1」同号两数相乘___________________________________
「2」异号两数相乘_____________________________________
「3」0与任何自然数相乘,得____
2.有理数的乘法运算律:
「1」乘法交换律:ab=_________
「2」乘法结合律:「ab」c=_______
「3」乘法分配律:「a+b」c=________
3.有理数的除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
三、课堂活动强化训练
某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结
四、延伸拓展,巩固内化
例2.「1」若ab=1,则a、b的关系为「」
「2」下列说法中正确的个数为「」
校长德能勤绩廉五方面述职报告
0除以任何数都得0
②如果=-
1,那么a是非负数若若⑤「c≠0」⑥「」⑦1的倒数等于本身
A1个B2个C3个D4个
「3」两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变「」
A两数相等B两数互为相反数
C两数互为倒数D两数相等或互为相反数
5
教学目的:
1、要求学生会进行有理数的加法运算;
2、使学生更多经历有关知识发生、规律发现过程。
教学分析:
重点:对乘法运算法则的运用,对积的确定。
难点:如何在该知识中注重知识体系的延续。
教学过程:
一、知识导向:
有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。
二、新课:
1、知识基础:
其一:小学所学过的乘法运算方法;
其二:有关在加法运算中结果的确定方法与步骤。
2、知识形成:
「引例」一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。
情形1:小虫向东爬行2分钟,那么它现在位于原来位置的.哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的东方6米处
拓展:如果规定向东为正,向西为负
情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的西方6米处
发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6
同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6
概括:把一个因数换成它的相反数,所得的积是原来的积的相反数
3、设疑:
如果我们把中的一个因数2换成它的相
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
综合:有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
例:计算:
「1」「2」
三、巩固训练:
P52.1、2、3
四、知识小结:
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
五、家庭作业:
P57.1、2,3
六、每日预题:
1、小学多学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
6
一、知识与技能
「1」能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。
「2」能利用计算器进行有理数的乘法运算。
二、过程与方法
经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。
三、情感态度与价值观
培养学生主动探索,积极思考的学习兴趣。
教学重、难点与关键
1.重点:能用法则进行多个因数的乘积运算。
2.难点:积的符号的确定。
3.关键:让学生观察实例,发现规律。
教具准备
投影仪。
四、教学过程
1.请叙述有理数的乘法法则。
2.计算:「1」│-5│「-2」;「2」「-」「3」0「-99.9」。
五、新授
1.多个有理数相乘,可以把它们按顺序依次相乘。
例如:计算:1「-1」「-7」=-「-7」=-2「-7」=14;
又如:「+2」[「-78」]=「+2」「-26」=-52
我们知道计算有理数的乘法,关键是确定积的.符号。
观察:下列各式的积是正的还是负的?
「1」234「2」234「-4」
「3」2「-3」「-4」「4」「-2」「-3」「-4」「-5」。
易得出:「1」、「3」式积为负,「2」、「4」式积为正,积的符号与负因数的个数有关。
教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。
2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。
7
目标:
1、知识与技能
使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。
2、过程与方法
经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。
重点、难点:
1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
过程:
一、创设情景,导入新
1、由前面的学习我们知道,正数的.加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?
乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:
(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。
3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?
二、合作交流,解读探究
1、小学学过的乘法的意义是什么?
乘法的分配律:a×「b+c」=a×b+a×c
如果两个数的和为0,那么这两个数互为相反数。
2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)
3、学生活动:计算3×(-5)+3×5,注意运用简便运算
通过计算表明3×(-5)与3×5互为相反数,从而有
3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?
鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。
在学生猜测、归纳、交流的过程中及时引导、肯定
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘,积仍为0
(板书)有理数乘法法则:
三、应用迁移,巩固提高
1、计算
(-5)×(-4)2×(-3.5)×(-0.75)×0
(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。
(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。
2、计算下列各题
①(-4)×5×(-0.25)②×()×(-2)
③×()×0×()
指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。
教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?
学生小结后,教师归纳:
几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0
练习:本P31练习
四、总结反思(学生先小结)
1、有理数乘法法则
2、有理数乘法的一般步骤是:
(1)确定积的符号;(2)把绝对值相乘。
五、作业:P39习题1.5A组1、2
8
教学目的:
「一」知识点目标:有理数的乘法运算律。
「二」能力训练目标:
1.经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。
2.能运用乘法运算律简化计算。
「三」情感与价值观要求:
1.在共同探索、共同发现、共同交流的过程中分享成功的.喜悦。
2.在讨论的过程中,使学生感受集体的力量,培养团队意识。
教学重点:
乘法运算律的运用。
教学难点:
乘法运算律的运用。
教学方法:
探究交流相结合。
创设问题情境,引入新课
[活动1]
问题1:有理数的加法具有交换律和结合律,在以前学过的范围内乘法交换律、结合律,以及乘法对加法的分配律都是成立的,那么在有理数的范围内,乘法的这些运算律成立吗?
问题2:计算下列各题:
「1」「一7」×8;
「2」8×「一7」;
「5」[3×「一4」]×「一5」;
「6」3×[「一4」×「一5」];
[师生]由学生自主探索,教师可参与到学生的讨论中。
像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。「略」
[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?
[生]例如:5×[3十「一7」]和5×3十5×「一7」;「略」
[师]「一5」×「3一7」和「一5」×3一5×7的结果相等吗?
「注意:「一5」×「3一7」中的3一7应看作3与「一7」的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。」
讲授新课:
[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。
应得出:
1.一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.
2.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3.一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。
优化营商环境心得体会
[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。
3.用简便方法计算:
[活动4]
练习「教科书第42页」
课时小结:
这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。
课后作业:课本习题1.4的第7题「3」、「6」。
活动与探究:
用简便方法计算:
「1」6.868×「一5」十6.868×「一12」十6.868×「十17」
「2」[「4×8」×25一8]×125
9
一、学习目标:
1.熟练掌握有理数的乘法法则
2.会运用乘法运算率简化乘法运算
3.了解互为倒数的意义,并会求一个非零有理数的`倒数
二、学习重点:
探索有理数乘法运算律
学习难点:运用乘法运算律简化计算
三、学习过程:
「一」、情境引入:
1、复习有理数的乘法法则「两个因数、两个以上的因数」,并举例说明。
2、在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?
观察下列各有理数乘法,从中可得到怎样的结论?
「1」「-6」「-7」=「-7」「-6」=
「2」[「-3」「-5」]2=「-3」[「-5」2]=
「3」「-4」「-3+5」=「-4」「-3」+「-4」5=
3、请再举几组数试一试,看上面所得的结论是否成立?
「二」、新课讲解:
有理数乘法运算律
交换律ab=ba
结合律「ab」c=a「bc」
分配律a「b+c」=ab+ac
例1.计算:
「1」8「-」「-0.125」「2」
「3」「」「-36」「4」
例2.计算
「1」8「2」「4」「」「3」「」「」
观察例2中的三个运算,两个因数有什么特点?它们的乘积呢?你能够得到什么结论?
「三」、巩固练习:
1.运用运算律填空
「1」-2-3=-3「_____」
「2」[-32]「-4」=-3[「______」「______」]
「3」-5[-2+-3]=-5「_____」+「_____」-3
2.选择题
「1」若a0,必有「」
Aa0Ba0Ca,b同号Da,b异号
「2」利用分配律计算时,正确的方案可以是「」
AB
CD
3.运用运算律计算:
「1」「-25」「-85」「-4」「2」14-12-1816
「3」6037-6017+6057「4」18-23+1323-423
「5」「-4」「-18.36」「6」「-」0.125「-2」
「7」「-+--」「-20」;「8」「-7.33」「42.07」+「-2.07」「-7.33」
四、课堂小结:
通过本节课你学到了哪些知识?你达成学习目标了吗?
五、作业布置:
课本第42页习题2.5第3题
数学评价手册
六、学后记/教后记
《有理数的乘法》数学教案 10
学习目标:
1、要熟记有理数除法的法则,会进行有理数除法的运算。
2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。
3、能熟练地进行简单的有理数的加减乘除混合运算。
4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有
学习重点:有理数除法的法则及应用;求一个有理数的倒数。
学习难点:在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。
学习过程:
一前置复习:
1、有理数的乘法法则是:
举例说明。
2、多个有理数乘法:「1」几个不等于0的有理数相乘,积的符号由决定,当时积为正;当时积为负。
「2」几个有理数相乘,积就为零。
二探究新知:「教师寄语:现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的」
自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法,一定要熟记:
「1」有理数除法运算转化为乘法运算的`法则:除以一个数,________________________。
____________________。
「2」有理数的除法法则:两数相除,_____________,_____________,_____________。
0除以任何_______________________________。
「3」与以前学过的倒数的概念一样,___________两个有理数互为倒数。
如,3与____互为倒数,-6与_____互为倒数,2.25是____的倒数,___是的倒数。
三新知应用:
例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则「1」,在两个_______数相除时,可选择法则「2」
学以致用计算:
「1」「42」7「2」「」「」
例2、计算「1」「」「」「」「2」「」「」
「温馨提示:1、有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、加减乘除混合运算的运算顺序和小学一样。」
四课堂练习:独立完成课本P59练习2,3题。「将完整的计算过程写在下面空白处」
五达标测试:「独立完成」
1填空:「1」2的倒数与的相反数的积是_______。
「2」「1」「3」「」=______。
「3」两个数的商为正数,那么这两个数一定是_________。
「4」一个数的倒数是它本身,则这个数是____________。
2、计算:「1」「2」
「3」、「4」「+」
六总结反思:
1、说一说:
本节课我学会了;
使我感触最深的是;
我感到最困难的是;
我想进一步探究的问题是。
2、评一评
自我评价小组评价教师评价
七布置作业
1「必做题」课本60页习题A组3,4题。「要求:做在作业本上」
2「选做题」课本60页习题B组1,2题。「要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流」
《有理数的乘法》数学教案 11
一、知识与技能
经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。
二、过程与方法
经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。
三、情感态度与价值观
培养学生积极探索精神,感受数学与实际生活的联系。
教学重、难点与关键
1.重点:应用法则正确地进行有理数乘法运算。
2.难点:两负数相乘,积的`符号为正与两负数相加和的符号为负号容易混淆。
3.关键:积的符号的确定。
教具准备
投影仪。
四、教学过程
一、引入新课
在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?
五、新授
课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O。
「1」如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
「2」如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
「3」如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
「4」如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么「1」中2cm记作+2cm,3分后记作+3分。
推荐阅读
查看更多相似文章